School of Engineering (Mechanical Engineering)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Course Name</th>
<th>Course Code</th>
<th>Marks:100</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credits</th>
<th>L-T-P</th>
<th>Exam.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>3</td>
<td>3-0-0</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

Unit - I

Introduction and Process Modeling: Introduction; Uniform energy method; Slab method; Slip line field method; Upper bound method; Visioplasticity method; Finite Element method.

Plasticity Fundamentals: Introduction; Von Misses criterion; Tresca criterion; Experimental verification of yield criterion; Plastic anisotropic; Anisotropic yield criterion; Plastic instability; Generalized necking failure conditions.

(07 Hours)

Unit - II

Uniform Energy and Slab Methods: Introduction; Uniform energy method; Application - Comparison of flat plate between two parallel platten; Rolling of flats; Direct extrusion; Wire drawing; Tube drawing.

Slab Method: Introduction; The slab method; Open die forging – Low and high slipping friction conditions; Mixed friction conditions; Load calculations; Strip drawing; Wire and rod drawing; Tube drawing; Extrusion; Strip rolling.

(09 Hours)

Unit - III

Slip Line Field Technique: Introduction; Plane strain; Alpha and beta lines; Stress equation; Velocity equation; Hencky’s first theorem; Hencky’s second theorem; Velocity discontinuities; Stress discontinuities; Stress boundary conditions; Construction of slip line fields; Construction of Hodographs; Application of field line technique for rolling extrusion etc.

(08 Hours)
Unit - IV

Upper Bound Technique: Introduction; Principle of virtual work; Principle of maximum work; Upper bound theorem; Application of upper bound technique for frictionless square die; extrusion through a smooth circular die; rolling of sheets; Axisymmetric extrusion; Axisymmetric deep drawing. (07 Hours)

Unit - V

Visioplasticity Technique: Introduction; Visioplasticity analysis – stress distribution under plane strain and in axial symmetry; Application. (06 Hours)

Unit - VI

Finite Element Method: Introduction; Finite element method; Eulerian rigid plastic FEM formulation for plane strain rolling – governing equation; domain and boundary conditions; integral form; finite element approximation; finite element equation; solution procedure. (08 Hours)

Recommended Books:

1. Modeling Techniques for Metal Forming Processes; G K Lal; P M Dixit; N Venkata Reddy; Narosa Publisher
2. Manufacturing Science; Ghosh & Mallik; Affiliated East-West Press.
3. Technology of Metal Forming Processes; S. Kumar; Prentice Hall of India.
5. An Introduction to the Principles of Metal Working; Rowe; Arnold.
7. ASM Metals Handbook. Vol.14; Forming and Forging; Metals Park; Ohio; USA; 1990.
8. Metal Forming: Fundamentals and Applications; Taylor Altan; Soo I.K. Oh; Harold. L. Gegel; ASM; Metals Park; Ohio; USA; 1983.