UNIVERSITY SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND 4IR TECHNOLOGIES

PROGRAMME STRUCTURE

B.TECH. COMPUTER SCIENCE AND ENGINEERING SPECILIZATION IN INTERNET OF THINGS 2021-2025

GAUTAM BUDDHA UNIVERSITY GAUTAM BUDH NAGAR, GREATER NOIDA, UP, INDIA

S.No.	Course Code	Course Name	L	Т	Р	Credits	Types
1	CS103	Fundamentals of Computer Programming	3	1	0	4	CC1/FC
2	CI103	Fundamentals of Internet of Things	2	0	0	2	CC2 / FC
3	MA101	Engineering Mathematics-I	3	1	0	4	GE1
4	PH102	Engineering Physics	3	1	0	4	GE2
5	EC101	Basic Electronics Engineering	3	1	0	4	GE3 / FC
6	EN101	English Proficiency	2	0	0	2	OE1 / AECC
7	CE103	Engineering Graphics Lab	1	0	2	2	GE-L1
8	CS181	Computer Programming Lab	0	0	2	1	CC-L1 / SEC
9	PH104	Engineering Physics Lab	0	0	2	1	GE-L2
10	EC181	Basic Electronics Engineering Lab	0	0	2	1	GE-L3
11	GP	General Proficiency	Non Credit				
		Total Hours and Credits	17	4	8	25	

SEMESTER I

SEMESTER II

S.No.	Course Code	Course Name		Т	Ρ	Credits	Types
1	CI102	Introduction to Python	2	0	0	2	CC3 / FC
2	CI104	Computer Organization and Architecture	3	0	0	3	CC4 / SEC
3	MA102	Engineering Mathematics-II	3	1	0	4	GE4
4	EE102	Basic Electrical Engineering	3	1	0	4	GE4
5	ME101	Engineering Mechanics	3	1	0	4	GE6
6	ES101	Environmental Studies	3	1	0	4	OE2 / AECC
7	CI182	Python Programming Lab	0	0	2	1	CC-L2 / SEC
8	CI184	Computer Organization and Architecture Lab	0	0	2	1	CC-L3 / SEC
9	EE104	Basic Electrical Engineering Lab	0	0	2	1	GE-L4
10	ME102	Workshop Practice	1	0	2	2	GE-L5
11	GP	General Proficiency	Non Credit				
		Total Hours and Credits	16	4	8	26	

S.No.	Course Code	Course Name	L	Т	Р	Credits	Types
1	CI201	Internet Technology	3	0	0	3	CC5 / SEC
2	CI203	Operating Systems	3	0	0	3	CC6
3	CI205	Data Structure & Algorithms	3	0	0	3	CC7 / SEC
4	CI207	Advanced Micro-Controller Based Systems	3	0	0	3	CC8
5	CI209	Sensors and Devices	3	0	0	3	CC9
6	MA201	Engineering Mathematics-III	3	1	0	4	GE7
7	CI281	Internet Technology Lab	0	0	3	2	CC-L4
8	CI283	Data Structure & Algorithms Lab	0	0	3	2	CC-L5 / SEC
9	CI285	Sensors and Devices Lab	0	0	3	2	CC-L6 / SEC
10	GP	General Proficiency	Non Credit				
		Total Hours and Credits	18	1	9	25	

SEMESTER III

SEMESTER IV

S.No.	Course Code	Course Name	L	Т	Ρ	Credits	Types
1	CI202	Software Engineering	3	0	0	3	CC10
2	CI204	Database Management System	3	0	0	3	CC11 / SEC
3	CI206	Java Programming	3	0	0	3	CC12
4	CI208	Artificial Intelligence	3	0	0	3	CC13
5	CI210	Theory of Automata	3	1	0	4	CC14
6	CI212	Computer Networks	3	0	0	3	CC15 / SEC
7	CI282	Database Management System Lab	0	0	3	2	CC-L7 / SEC
8	CI284	Java Programming Lab	0	0	3	2	CC-L8 / SEC
9	CI286	Computer Networks Lab	0	0	3	2	CC-L9 / SEC
10	GP	General Proficiency	Non Credit				
		Total Hours and Credits	18	1	9	25	

S.No.	Course Code	Course Name	L	Т	Ρ	Credits	Types
1	CI301	Compiler Design	3	1	0	4	CC16 / AECC
2	CI303	Soft Computing Techniques	3	0	0	3	CC17
3	CI305	Analysis and Design of Algorithms	3	0	0	3	CC18
4	CI307	Cloud Computing	3	0	0	3	CC19
5	CI309	Machine Learning	3	0	0	3	CC20 / SEC
6		Elective 1	3	0	0	3	E1 / DSE
7	CI381	Analysis and Design of Algorithms Lab	0	0	3	2	CC-L10/ SEC
8	CI383	Cloud Computing Lab	0	0	3	2	CC-L11 / SEC
9	CI385	Machine Learning Lab using Python	0	0	3	2	CC-L12 / SEC
10	GP	General Proficiency	Non Credit				
		Total Hours and Credits	18	1	9	25	

SEMESTER V

SEMESTER VI

S.No.	Course Code	Course Name		Т	Ρ	Credits	Types
1	CI302	Web Development using PHP	3	0	0	3	CC21
2	CI304	Network Technologies in IoT and its Applications	3	0	0	3	CC22
3	CI306	Ad hoc & Sensor Networks	3	1	0	4	CC23
4	CI308	IoT Architecture, Protocols and Programming	3	0	0	3	CC24
5	CI310	Big Data Analytics	3	0	0	3	CC25 / SEC
6		Elective 2	3	0	0	3	E2 / DSE
7	CI382	Web Development using PHP Lab	0	0	3	2	CC-L13
8	CI384	IoT Programming Lab	0	0	3	2	CC-L14
9	CI386	Big Data Analytics Lab	0	0	3	2	CC-L15
10	GP	General Proficiency	Non Credit				
		Total Hours and Credits	18	1	9	25	

Industrial Training will be done by candidate individually after third year during the summer break and it will be of minimum 4 weeks. It will be evaluated as per University Examination in VII semester.

S.No.	Course Code	Course Name	L	Т	Ρ	Credits	Types
1	MA401	Modeling & Simulation	3	1	0	4	GE8
2	CI401	Cloud Based IoT	3	0	0	3	CC26
3	CI403	Open Source Programming for IoT	2	0	0	2	CC27 / SEC
4		Elective 3	3	0	0	3	E3 / DSE
5		Elective 4	3	0	0	3	E4 / DSE
6	CI481	Open Source Programming for IoT Lab	0	0	3	2	CC-L16
7	CI491	Minor Project	0	0	10	5	MP1/E
8	CI493	Industrial Training	0	0	6	3	IT1/E
9	GP	General Proficiency		Non Credit			
		Total Hours and Credits	14	1	19	25	

SEMESTER VII

SEMESTER VIII

S.No.	Course Code	Course Name	L	Т	Ρ	Credits	Types
1	CI490	Seminar	0	0	3	2	S / E
2	CI492	Major Project	0	0	16	8	MP2 / E
3	CI494	Internship	0	0	30	15	I/E
4	GP	General Proficiency	Non Credit				
		Total Hours and Credits	0	0	49	25	

GRAND TOTAL OF CREDITS = 200

In the **Seminar**, student need to study and present individually, on latest research paper of their specialized area and It will be evaluated as per University Examination Rules.

The **Internship** in Industry will be done by candidate individually during the 8th semester and it will be for a minimum of 4 (-6) months. It will be evaluated as per University Examination Rules.

Minor and Major Project will be in a group and It will be evaluated as per University Examination Rules.

USICT will provide a mentor/supervisor for industrial training, seminar, internship, minor and major projects.

S.No.	Course Code	Course Name	L	Т	Ρ	Credits	Types
1	CI311	Network Defense for Cyber Security	3	0	0	3	E1
2	CI313	Energy Management in IoT Devices	3	0	0	3	E1
3	CI315	Multimedia and IoT Technology	3	0	0	3	E1
4	CI317	Advanced Sensor Technologies	3	0	0	3	E1
5	CI319	Embdded Systems	3	0	0	3	E1
6	CI312	Network Modeling	3	0	0	3	E2
7	CI314	Cloud Architecture and Security	3	0	0	3	E2
8	CI316	Network Management	3	0	0	3	E2
9	CI318	Distributed Computing Systems	3	0	0	3	E2
10	CI320	Software Defined Networks	3	0	0	3	E2
11	CI405	Information Security and Privacy in IoT	3	0	0	3	E3
12	CI407	SDN and NFV for IOT	3	0	0	3	E3
13	CI409	SAS Analytics	3	0	0	3	E3
14	CI411	Mobile and Wireless Network Security	3	0	0	3	E3
15	CI413	Cryptography and Network Security	3	0	0	3	E3
16	CI415	Network Simulators	3	0	0	3	E4
17	CI417	Android Security Design and Internals	3	0	0	3	E4
18	CI419	Business Process Management Cognitive IoT	3	0	0	3	E4
19	CI421	IoT in Health Care	3	0	0	3	E4
20	CI423	Industrial IoT	3	0	0	3	E4

ELECTIVES FROM DCSE

- **CI C**omputer Science & Engineering / Internet of Things for Course Code
- **CC** Core Course from USICT for Type of Course
- **GE** General Elective from related discipline of other Deptt./School
- **GE L** General Elective Lab from related discipline of other Deptt./School
- **OE** Open Elective from other discipline of other Deptt./School
- AECC Ability Enhancement Compulsory Course
- DSE Discipline Specific Course

- SEC Skill Enhancement Course
- E Elective from USICT
- CC-L Core Course Lab from USICT
- IT1 Industrial Training
- MP Minor / Major Project
- S Seminar
- I Internship

SEM-I

FUNDAMENTALS OF COMPUTER PROGRAMMING									
Course Code:	CS103	Course Credits:	4						
Course Category:	CC	Course (U / P)	U						
Course Year (U / P):	1U	Course Semester (U / P):	2 U						
No. of Lectures + Tutorials (Hrs/Week):	03 + 01	Mid Sem. Exam Hours:	1						
Total No. of Lectures (L + T):	45 + 15	End Sem. Exam Hours:	3						
COURSE OBJECTIVES									
1. To provide knowledge of primary an	nd derived da	atatypes used in C							
2. To make them understand basic cond	ditional and	break statements used in C							
3. To provide a basic understanding of pointers and pointers arithmetic									
4. To enable the students to explore how pre-defined functions are used and also created in a									
program									
5. Learn difference between static and	dynamic me	mory allocation method and also lear	n various						
dynamic memory allocation methods	s.								
COURSE OUTCOMES									
At the end of the course the students should	be able to:								
1. Understand the basic building blocks	s of C langua	age like tokens, identifiers, constants	and						
variables.									
2. Acquire knowledge of various condi	tional and lo	op statements							
3. Judge which data structure to use am	nong arrays,	struct and union depending on the ap	plication						
4. Use pointers and tell the difference b	between call	by value and call by reference.							
5. Use dynamic memory allocation to c	create arrays,	, structures and union and also perfor	m various						
operations on them.									

UNIT I INTRODUCTION TO COMPUTER AND PROGRAMMING CONCEPTS

Definition, characteristic, generation of computers, basic components of a computer system, memory, input, output and storage units, high level language and low level language, Soft- ware: system software, application software, hardware, firmware, Operating System, compil- er, interpreter and assembler, linker, loader, debugger, IDE. Introduction to algorithm and flow chart; representation of algorithm using flow chart symbol, pseudo code, basic algorithm de- sign, characteristics of good algorithm, development of algorithm.

UNIT II INTRODUCTION TO C PROGRAMMING LANGUAGE

Introduction to C programming language , Declaring variables, preprocessor statements, arithmetic operators, programming style, keyboard input , relational operators, introduction, feature of C language, concepts, uses, basic program structure, simple data types, variables, constants, operators, comments, control flow statement :if, while, for, do-while, switch.

UNIT III DATA TYPES AND STRUCTURES

bitwise operators, Pre defined and User defined data types, arrays, declaration and opera- tions on arrays, searching and sorting on arrays, types of sorting, 2D arrays, Passing 2D arrays to functions, structure, member

accessing, structure and union, array of structures, func- tions, declaration and use of functions, parameter passing, recurssion.

UNIT IV FUNDAMENTALS OF POINTERS

Introduction to pointers, pointer notations in C, Declaration and usages of pointers, operations that can be performed on computers, use of pointers in programming exercises, parameter passing in pointers, call by value, call by references, array and characters using pointers, dynamic memory allocation

UNIT V FILE HANDLING IN C AND ENUM

Introduction to file handling, file operations in C, defining and opening in file, reading a file, closing a file, input output operations on file, counting: characters, tabs, spaces, file opening modes, error handling in input/output operations, Enumerated data types, use of Enum, declaration of Enum.

Text Books:

- 1. C Programming by Herbert Shield
- 2. C Programming Language 2nd Edition by Brian, W Kernighan Pearson Education.
- 3. Programming in ANSI C by E. Balagurusamy, Tata Mgraw Hill
- 4. C Puzzle Book: Puzzles For The C. Programming Language by Alan R Feuer Prentice HallGale
- 5. Expert C Programming: Deep C Secrets (s) by Peter Van Der Linden Dorling Kindersley India.

INTERNET OF THINGS								
Course Code:	CI103 Course Credits:		2					
Course Category:	CC	Course (U / P)	U					
Course Year (U / P):	1U	Course Semester (U / P):	1U					
No. of Lectures + Tutorials+Practical	2+0+0	Mid Sem. Exam Hours:	1					
(Hrs/Week):								
Total No. of Lectures (L + T):	30 +0+00	End Sem. Exam Hours:	3					
COURSE OBJECTIVES								
1 Students will be explored to the interco	nnection and	l integration of the physical world	l in IoT.					
2 Learning of networking concepts in IoT environment.								
3 Understanding of various wireless ne	etwork, topo	logies, IoT protocols.						
4 Understanding of the importance of	security issu	ues in IoT.						
5 implementation of IoT in real life.								
COURSE OUTCOMES								
At the end of the course the students	should be a	ble to:						
1 understand about all concepts of Intern	et of Things.							
2 understand building blocks of Internet of	of Things and	its characteristics.						
3 learn application protocols for IoT.								
4 Able to understand the application areas of IoT.								
5 Able to realize the revolution of Interne	5 Able to realize the revolution of Internet in Mobile Devices, Cloud & Sensor Networks.							

Unit I Basics of IoT

Introduction to computer networks, evolution of computer networks and its uses, Wireless sensor network, TCP/IP protocol stack, Internet of Things, Purpose of IoT, Building Blocks of IoT, Elements of an IoT ecosystem.

Unit II IoT Protocols

Protocol Standardization for IoT, Efforts, M2M and WSN Protocols, SCADA and RFID Protocols, Issues with IoT Standardization, Unified Data Standards, Protocols: EEE802.15.4, BACNet Protocol, Modbus, KNX, Zigbee, Network layer, APS layer, Security

Unit III IoT Architecture

IoT Open source architecture (OIC), OIC Architecture & Design principles, IoT Devices and deployment models, IoTivity: An Open source IoT stack, Overview- IoTivity stack architecture- Resource model and Abstraction

Unit IV Web of Things

Web of Things versus Internet of Things, Two Pillars of the Web, Architecture Standardization for WoT, Platform Middleware for WoT, Unified Multitier WoT Architecture, WoT Portals and Business Intelligence.

Unit V IoT Applications

IoT applications for industry: Future Factory Concepts, Brownfield IoT, Smart Objects, and Smart Applications. Study of existing IoT platforms /middleware, IoT- A, Hydra etc.

Text Books

- 1. Honbo Zhou, "The Internet of Things in the Cloud: A Middleware Perspective", CRC Press, 2012.
- 2. Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), "Architecting the InternetofThings", Springer, 2011.
- 3. David Easley and Jon Kleinberg, "Networks, Crowds, and Markets: Reasoning About a HighlyConnected World", Cambridge University Press, 2010.
- 4. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things Keyapplicationsand Protocols", Wiley, 2012.

Reference Books

- 1. Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-on-Approach)",1st Edition,VPT, 2014
- 2. Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to ConnectingEverything", 1st Edition, Apress Publications, 2013
- 3. CunoPfister, Getting Started with the Internet of Things, O"Reilly Media, 2011, ISBN: 978-1-4493-9357-1

COMPUTER PROGRAMMING LAB								
Course Code:	CS181	Course Credits:	1					
Course Category:	СС-Р	Course (U / P)	U					
Course Year (U / P):	1U	Course Semester (U / P):	2 U					
No. of Labs (Hrs/Week):	02	Mid Sem. Exam Hours:						
Total No. of Labs :	10	End Sem. Exam Hours:	3					
COURSE OBJECTIVES								
1. To introduce students to the basic kn	lowledge of p	programming fundamentals of C lar	nguage.					
2. To impart writing skill of C program	ming to the	students and solving problems.						
3. To impart the concepts like looping, array, functions, pointers, file, structure.								
4. Write programs to print output on the screen as well as in the files								
5. Apply all the concepts that have been	n covered in	the theory course.						
COURSE OUTCOMES								
At the end of the course the students show	uld be able t	to:						
1. Recognize and understand the syntax	x and constru	ction of C programming code						
2. Able to design and develop Compute	er programs,	analyzes, and interprets the concept	t of pointers,					
declarations, initialization, operation	s on pointers	s and their usage.						
3. Able to define data types and use the	em in simple	data processing applications also he	e/she must be					
able to use the concept of array of str	ructures.							
4. Student must be able to define union	and enumer	ation user defined data types.						
1. Develop confidence for self-ed	ucation and	ability for life-long learning	needed for					
Computer language.								
5.								

LIST OF EXPERIMENTS:

- 1. Write a program for the following:
- a) To find the reverse of a given number.
- b) Calculate factorial of a number using recursion.
- 2. Write a program to take marks of a student of 5 subjects as an input and print the grade. Also create the same program using switch.

marks<40 = FAIL marks>=40 and <=59 =GOOD marks>=59 and <80 =EXCELLENT marks>=80 = OUTSTANDING

- 3. Write a program to compute the length of a string using While Loop.
- 4. Write a program to print the following pattern: -

```
a) *
```

** *** ***

B.Tech. Computer Science and Engineering (IOT)

```
*****
b) *
**
***
c) 0
1 2
3 4 5
6 7 8 9
```

5. Write a program to compute and display the product of two matrices.

- 6. Write a program to illustrate the difference between call by value and call by reference.
- 7. Write a program to check whether a given string is palindrome or not.
- 8. Create a structure called STUDENT having name, reg no., class as its field.

Compute the size of structure STUDENT.

- 9. Write a program to compute the length of a string using pointers.
- 10. Write a program to create a file, input data and display its content.

SEM-II

Introduction to PYTHON					
Course Code:	CI102	Course Credits:	2		
Course Category:	CC	Course (U / P)	U		
Course Year (U / P):	1U	Course Semester (U / P):	2 U		
No. of Lectures + Tutorials (Hrs/Week):	02 +0+0	Mid Sem. Exam Hours:	1		
Total No. of Lectures (L + T):	30	End Sem. Exam Hours:	3		
COURSE OBJECTIVES					
1. Master the fundamentals of writing Python scripts.					
2. Learn core Python scripting elements such as variables and flow control structures.					
3. Discover how to work with lists and sequence data.					
4. Write Python functions to facilitate code reuse.					
5. Use Python to read and write files.					
COURSE OUTCOMES					
At the end of the course the students should	be able to:				
1. Problem solving and programming capability.					
2. Explain basic principles of Python programming language					
3. Implement database and GUI applications.					
4. Implement object oriented concepts					
5. Define and demonstrate the use of b	5. Define and demonstrate the use of built-in data structures "lists" and "dictionary"				

UNIT I PYTHON BASICS, CONDITIONAL & LOOPS

Installation of Python and python Notebook, Python Objects, Number & Booleans, Strings, Operators -Arithmetic, Bitwise, comparison and Assignment operators, Operators Precedence and associativity. Conditions (If else, if-elif-else), Loops (While ,for), Break and Continue statements, Range Functions

UNIT II STRING OBJECTS AND LIST OBJECTS

String object basics, String methods, Splitting and Joining Strings, String format functions, list object basics, list methods, List comprehensions.

UNIT III TUPLES, SET, DICTIONARIES & FUNCTIONS

Tuples, Sets, Dictionary Object basics, Dictionary Object methods, Dictionary View Objects. Functions basics, Parameter passing, Iterators

UNIT IV OOPS CONCEPTS & WORKING WITH FILES

OOPS basic concepts, creating classes and Objects, Inheritance, Multiple Inheritance, working with files, Reading and writing files, Buffered read and write, Other File methods

UNIT V MODULES, EXCEPTION HANDLING & DATABASE PROGRAMMING

Using Standard Module, Creating new modules, Exceptions Handling with Try-except, Creating, inserting and retrieving Table, Updating and deleting the data.

Text Books:

1. Head First Python 2e: A Brain-Friendly Guide Paperback – Illustrated, 16 by Paul Barry, Oreilly

2. Python: The Complete Reference Paperback – 20 March 2018 by Martin C. Brown (Author), TMH Publication

3. Let Us Python by Yashavant Kanetkar, 1 January 2019, BPB publication

4. Python Programming, A modular approach, First Edition, By Pearson Publication by Taneja Sheetal and Kumar Naveen, 26 September 2017

COMPUTER ORGANIZATION AND ARCHITECTURE					
Course Code:	CI104	Course Credits:	3		
Course Category:	CC	Course (U / P)	U		
Course Year (U / P):	1U	Course Semester (U / P):	2 U		
No. of Lectures + Tutorials (Hrs/Week):	03 + 00	Mid Sem. Exam Hours:	1		
Total No. of Lectures (L + T):	45 + 00	End Sem. Exam Hours:	3		
COURSE OBJECTIVES					
1. Discuss the basic concepts and structure of computers.					
2. Understand concepts of register transfer logic and arithmetic operations.					
3. Explain different types of addressing modes and memory organization.					
4. Learn the different types of serial communication techniques.					
5. Summarize the Instruction execution stages.					
COURSE OUTCOMES					
At the end of the course the students should be able to:					
1. Define different number systems, binary addition and subtraction, 2's complement representation					
and operations with this representation	and operations with this representation.				
2. Understand the theory and architecture of central processing unit					
3. Analyze some of the design issues in terms of speed, technology, cost, performance.					
4. Use appropriate tools to design verify and test the CPU architecture					
5. Learn the concepts of parallel processing, pipelining and interprocessor communication.					

UNIT I COMPUTER ARITHMETIC AND NUMBER SYSTEM

Functional units of digital system and their interconnections, Logic gates, Boolean algebra, combinational circuits, flip flops, sequential circuits, Number representation; number system, fixed and floating point number representation, arithmetic algorithms (addition, subtraction, booth multiplication).

UNIT II REGISTER TRANSFER AND MICROOPERATION

Register transfer language, bus and memory transfers, bus architecture, bus arbitration, arithmetic logic, shift micro operation, arithmetic logic shift unit, design of fast address.

UNIT III PROCESSOR DESIGN

Processor organization: general register organization, stack organization, addressing mode, instruction format, data transfer & manipulations, program control, reduced instruction set computer.

UNIT IV INPUT-OUTPUT ORGANIZATION

I/O interface, synchronous and asynchronous data transfer, strobe, handshaking schemes, modes of transfer, interrupts & interrupt handling, direct memory access, I/O channels ,input-output processor.

UNIT V MEMORY ORGANIZATION

Memory hierarchy, main memory (RAM and ROM Chips), organization of 2d and 2 1/2 d, auxiliary memory, Cache memories: concept and design issues & performance, address mapping and replacement, virtual memory, memory management hardware.

Text Books:

- 1. Patterson, Computer Organisation and Design, Elsevier Pub. 2009
- 2. William Stalling, "Computer Organization", PHI
- 3. Vravice, Hamacher & Zaky, "Computer Organization", TMH
- 4. Mano," Computer System Architecture", PHI
- 5. John P Hays, "Computer Organization", McGraw Hill
- 6. Tannenbaum," Structured Computer Organization', PHI
- 7. P Pal chaudhry, ' Computer Organization & Design', PHI

PYTHON PROGRAMMING LAB					
Course Code:	CI182	Course Credits:	1		
Course Category:	СС-Р	Course (U / P)	U		
Course Year (U / P):	1U	Course Semester (U / P):	2 U		
No. of Labs (Hrs/Week):	2 hrs)	Mid Sem. Exam Hours:	1		
Total No. of Labs:	10	End Sem. Exam Hours:	3		
	•				
COURSE OBJECTIVES					
1. To introduce students to use of Python programming to solve data analytics problems					
2. To elaborate students to statistical analysis using Python programming					
3. To describe various libraries required for data analytics					
4. To elaborate statistical analysis using Python					
5. To study special libraries in Python such as Numpy and Scipy					
COURSE OUTCOMES					
At the end of the course the students should	be able to:				
1. Improve problem solving and progra	mming capa	bility			
2. Learn data analytics through python programming					
3. Underline the use of package					
4. Write simple Python programs for solving problems.					
5. Decompose a Python program into functions, lists etc.					

List of Experiments:

Write a program in python :

- 1. To print the largest/smallest of two numbers
- 2. To read two numbers x and n and print x^n (first write with the use of operator and then write with

the help of inbuilt function

- 3. To input the value of x and n and print the sum of the series:
- a. $1+x+x^2+x^3+x^4+\dots x^n$
- 4. Write a program to compute distance between two points taking input from the user (Pythagorean

Theorem)

5. Write a program to count the numbers of characters in the string and store them in a dictionary data

structure

- 6. To print factorial of a number with and without using recursion
- 7. To tell the frequency of the most common word in a file or a given string
- 8. Write a function to find all duplicates in the list.
- 9. Write a program to perform addition and multiplication of two square matrices
- 10. To read from a text file and print each word separated by # symbol, example #xyz #xyz

Course Code:	CI183	Course Credits:	1			
Course Category:	CC-P	Course (U / P)	U			
Course Year (U / P):	1U	Course Semester (U / P):	2 U			
No. of Labs (Hrs/Week):	2 hrs	Mid Sem. Exam Hours:	1			
Total No. of Labs:	10	End Sem. Exam Hours:	3			
COURSE OBJECTIVES						

6. Discuss the basic concepts and structure of computers.

- 7. Understand concepts of register transfer logic and arithmetic operations.
- 8. Explain different types of addressing modes and memory organization.
- 9. Learn the different types of serial communication techniques.
- 10. Summarize the Instruction execution stages.

COURSE OUTCOMES

At the end of the course the students should be able to:

- 6. Define different number systems, binary addition and subtraction, 2's complement representation and operations with this representation.
- 7. Understand the theory and architecture of central processing unit

8. Analyze some of the design issues in terms of speed, technology, cost, performance.

9. Use appropriate tools to design verify and test the CPU architecture

10. Learn the concepts of parallel processing, pipelining and interprocessor communication.

List of Experiments:

- 1. Experiments / Spice Simulations
- 2. Bread Board Implementation of Logic Gates and Universal gates.
- 3. Bread Board Implementation of Flip-Flops.
- 4. Experiments with clocked Flip-Flop.
- 5. Design of Counters.
- 6. Bread Board implementation of counters & shift registers.
- 7. Implementation of Arithmetic algorithms.
- 8. Bread Board implementation of Adder/Subtractor (Half, Full)
- 9. Bread Board implementation of Binary Adder.
- 10. Design a multiplex display unit using counter, multiplexer and decoder.
- 11. Bread Board implementation of Seven Segment Display.
- 12. Programming in Assembly Language.12x2T
- 13. Use a multiplexer unit to design a composite ALU.
- 14. Test a RAM chip and cascade two chips for vertical and horizontal expansion. Use wired OR tri-state output
- 15. Use ALU chip for multibit arithmetic operation.